金石堂網路最大書店,好康分享,好書推薦,國內外精選好書,玩具精品,動漫模型,
服飾鞋包穿搭必備,時尚精品,品牌手錶等等的第一手好康資訊~都在小編的好康分享裡喔~~~
小弟最近再幫朋友找Big Data大數據的獲利模式:圖解-案例-策略-實戰,經過比價後決定到"金石堂網路書店"這裡買,東西好,客服態度棒
有問題處理不囉嗦~~~一開始以為"金石堂網路書店"是只有賣書而已,逛過他們的網站後發現,規模其實不輸各大網路商城
有各式各樣的好物喔,玩具模型,動漫商品,日常生活用品通通都有,而且價格比較親民哦~~~~建議各位朋友可以多來金石堂網路書店逛逛比較,可以挖到不錯的好康喔

商品網址
《Big Data大數據的獲利模式:圖解?案例?策略?實戰》
分析現狀還不夠,預測未來更重要!
與其相信一個人的直覺,不如相信數千萬人的資料——
從圖解、案例,到策略與實戰,
一本書,徹底解讀大數據!
Facebook、Google、Amazon,
以及GREE、瑞可利(Recruit)等知名企業都在用的資料淘金術!
懂得找出資料的價值、萃取可用的資訊,
就能將大數據轉化為商業智慧(BI);
嗅出趨勢、解決問題、創造商機,
進而創造「偶然的幸運」(serendipity),
正是大數據帶領企業持續前進的動力!
連上Facebook頁面,出現推薦「你可能認識的朋友……」的建議,妳因此而找到失聯已久國中同學。
到amazon.com網站購書,你看到「買這本書的人也買了這些書……」的清單,也正好是自己想讀的書。
只要打一個字,Google就出現「您是不是要查……」的資訊,正確預測到你想找的關鍵字。
事實上,這些「偶然的幸運」(Serendipity),都和善用大數據(Big Data,亦稱巨量資料、海量資料)有關。
上述的企業提供你需要的資料、精準預測到你的下一步,其實並非魔法、也不是憑空而來。這些企業將大數據轉化為商業智慧(BI,Business Intelligence),不僅分析現狀,更懂得預測未來。
大數據是「二十一世紀的新石油」,也是繼資料挖掘(data mining)、雲端運算、社群網站之後,最受矚目的趨勢。如何將龐雜的巨量資料理出脈絡、找到關聯、發掘價值,找出商機,成為決勝關鍵。
本書作者城田真琴,是野村總合研究所(簡稱野村總研)高級研究員,也是大數據領域的權威專家。在日本,野村總研被稱為最有影響力的民間智庫,作者以野村總研獨家調查的第一手資料為基礎,介紹Zynga、Centrica、Catalina Marketing等歐美企業,以及小松(KOMATSU)、瑞可利(Recruit)、GREE等日本企業如何應用大數據的實際案例。
一本書,讓你認清楚資料(data)、資訊(information)與情報(intelligence)的不同,不僅要看得到、看得懂,還要能用得出來,進而找到真正的商機所在!
金石堂好書開箱
導讀
台灣野村總研諮詢顧問股份有限公司副總經理陳志仁
各界推薦
美商天睿資訊系統有限公司(Teradata)台灣分公司總經理吳世鈺
英國開放知識基金會地區大使徐子涵(Schee)
國立交通大學經營管理研究所教授楊千
PC HOME網路家庭董事長詹宏志
和沛科技股份有限公司總經理翟本喬
英商巴克萊銀行台北分行董事總經理 劉奕成
資深部落客、獨立媒體人鄭緯筌(Vista)
推薦語
本書提出許多實際成功應用的案例,列出相關互動隱私及安全的議題,是一本有相當廣度的巨量資料相關讀物,很適合關心未來的知識分子閱讀。——楊千(國立交通大學經營管理研究所教授)
我很喜歡作者城田真琴在本書中提出的許多細微的觀察,例如,在說明亞馬遜(Amazon)電子商務的「協同過濾」(Collaborative Filtering)技術時,引經據典地介紹「偶然的幸運」(Serendipity)這個詞,這是來自英國小說家霍雷斯.華爾波(Horace Walpole)在1754年的新創文字,描述消費者意外擁有幸運或是發現有價值事物的奇特心情,很傳神地說明了給消費者不可預期的幸運,正是巨量資料技術不斷前進的動力啊!——陳志仁(台灣野村總研諮詢顧問股份有限公司副總經理)
本書的付梓,提供了一個巨量資料生態圈比較完整的面貌,是非常好的出發點。其中最值得推薦閱讀的部分,在於日本企業小松(KOMATSU)、瑞可利(Recruit)、GREE等,如何運用巨量資料強化地域經濟的思維。在面臨全球產業布局和硬體利潤微薄化的今日,如何槓桿地域劣勢,轉化為全球區域發展的特色核心,日本政府和民間的過來經驗,不失為台灣各界的參考基準。——徐子涵 Schee(英國開放知識基金會地區大使、Fertta Communications執行長)
想要做Big Data(巨量資料)的人請先認清楚:什麼是Data(資料)?存得起來的,就是storage(儲存)。看得到的,才是data(資料)。看得懂的,叫做information(資訊)。用得出來的,才能稱為intelligence(情報、智慧)。很高興看到這本書並未落入坊間許多一窩蜂介紹工具的潮流,而能把主要的篇幅用在許多其他重要的面向。希望讀者在看完本書之後,能對如何萃取周遭的資訊並加以運用有更深一層的認識,並從Big Data進步到Big Intelligence的層級。——翟本喬(和沛科技股份有限公司總經理,曾任台達電子雲端技術中心資深處長、Google Platforms Architect。)
身處於強調「與其相信一個人的判斷,不如相信千萬人的巨量資料」的時代,身為決策者,已經不能只靠直覺或數字,更必須融合資料科學,從各種消費紀錄、社群網站的輿情觀測、打卡定位等資料中萃取價值,做為決策參考之用。未來這段時間,所有從事行銷或商務的人,都將會遭到「巨量資料」淹沒,在載浮載沉之間,我推薦這本書當作你我的浮木,讓我們面對資訊洪流(data deluge),卻依然能一窺堂奧。——劉奕成(英商巴克萊銀行台北分行董事總經理、台灣金融分析專業人員協會□CFA台灣分會〕理事長)
閱讀本書最大的收穫,並不是了解巨量資料的重要性,而是知道巨量資料可以如何應用在商業上?巨量資料帶給我們的衝擊會愈來愈大,你最好從現在就開始習慣。是的,我們活在廣袤的資料流中。而此刻,你無需驚慌,只需要有一本好書指引。帶著本書,讓我們啟航吧!——鄭緯筌Vista(資深部落客、獨立媒體人)
作者介紹
城田真琴(Makoto SHIROTA)
野村總合研究所(NRI,Nomura Research Institute)創新開發部高級研究員、IT分析師,日本政府「智慧雲端運算研究會」智庫成員。負責高端技術趨勢調查研究、供應商戰略分析、國內外企業IT應用調查,專業領域為雲端運算、商務分析、M2M、IoT等。著作包括:《雲端運算的衝擊》、《你不可不知的雲端運算常識與非常識》、《2012年版IT年鑒》等。
譯者介紹
鐘慧真(前言、一至四章)
「上輩子」是軟體工程師,國立清華大學電機工程研究所畢業,曾任職於飛利浦半導體與宏達電。目前是從事日翻中筆譯的家庭主婦,定居於日本長野縣。譯作《不執著的生活工作術》(經濟新潮社出版)。
部落格:【黛博拉看日本】deborahjong.wordpress.com/。
梁世英(五至八章、謝詞)
日本一橋大學商學研究所碩士,專長財務金融,目前為專職日文譯者。譯作包括《這樣圖解就對了!》《鍛鍊你的策略腦》《想像的力量》《Facilitation引導學》(以上均由經濟新潮社出版)等。
Big Data大數據的獲利模式:圖解?案例?策略?實戰-目錄導覽說明
- 【導讀】
創造「偶然的幸運」(serendipity),正是巨量資料技術不斷前進的動力(台灣野村總研諮詢顧問股份有限公司副總經理陳志仁)
【推薦序】
當商業智慧隱藏在雲深不知處(國立交通大學經營管理研究所教授楊千)
Big Data, Big Intelligence:從資料、資訊到情報(和沛科技股份有限公司總經理翟本喬)
當巨量資料與社會脈絡交集(英國開放知識基金會地區大使徐子涵 Schee)
Data、Data、Data:我們活在廣袤的資料流中(資深部落客鄭緯筌Vista)
老大哥在看著你:Big Data□ Big Brother□(英商巴克萊銀行台北分行董事總經理劉奕成)
前言
★第一章什麼是巨量資料
資料洪流(The Data deluge)
巨量資料的3V特性
廣義的巨量資料
為什麼到現在巨量資料才受到眾人的矚目?(1)巨量資料的民主化
為什麼到現在巨量資料才受到眾人的矚目?(2)硬體性價比的提升與軟體技術的進化
為什麼到現在巨量資料才受到眾人的矚目?(3)雲端的普及
從「分析過去」到「預測未來」商業智慧與巨量資料的交會
從點(交易資料)到線(互動資料)的分析
巨量資料分析的起源
本章重點整理
★第二章支撐巨量資料的技術
人才短缺
什麼是Hadoop
與日俱增的套件
眾多套件版本並存的原因
NoSQL資料庫
創投也對Hadoop、NoSQL開發企業投以熱切的目光
巨量資料時代的資料處理基礎
備受矚目的分析資料庫
串流資料(即時資料)處理
自行開發串流資料處理技術的網路公司
機器學習、統計分析等
自然語言處理、其它
本章重點整理
★第三章以巨量資料為核心競爭力的企業歐美企業篇
快速成長之網路公司的巨量資料運用技巧
eBay:每天產生50 TB的資料
(1)遠超乎想像的巨量資料產生速度
(2)eBay的資料分析基礎
Zynga:披著遊戲開發商外皮的資料分析公司
(1)社群遊戲經濟的重要指標
(2)提升病毒係數的機制
(3)遊戲其實是資料驅動營運
(4)三次點擊原則
Centrica:藉由引進智慧電表分析能源消耗模式
(1)英國電費、瓦斯費收費的實際狀況
(2)引進智慧電表後的影響
卡特琳娜行銷集團:以「收銀台優待券」設計顧客的消費行為
(1)儲存了超過一億人份的消費紀錄
(2)預測顧客的消費行為,帶動門市買氣
本章重點整理
★第四章以巨量資料為核心競爭力的企業日本企業篇
日本國內也開始運用巨量資料
小松(KOMATSU):日本運用巨量資料的先驅
瑞可利(Recruit):徹底運用Hadoop資料分析,成功改造企業文化
(1)幾乎全公司上下都用Hadoop
(2)支撐瑞可利巨量資料分析的Hadoop基礎
(3)成功的祕訣在於組織體制
(4)對於瑞可利而言,Hadoop的「真正價值」究竟是什麼?
GREE:資料驅動型營運方式是快速成長的原動力
(1)與其相信一人的判斷,不如相信數千萬人的資料
(2)資料驅動型營運方式的根基來自對於日誌資料的執著
(3)具備多種技能的專業人士齊聚一堂
(4)將溝通不良減至最少的團隊體制
日本麥當勞:在現實世界實現一對一行銷 (One-To-One Marketing)
(1)劃時代優待券背後的周全準備
(2)把焦點集中在做為集點卡的行動電話與智慧型手機
本章重點整理
★第五章巨量資料的運用模式★
巨量資料的運用案例
(1)精準推薦商品或服務
(2)行為定位廣告
(3)運用地點資訊的行銷
(4)糾出盜刷
(5)顧客流失分析
(6)預測設備故障
(7)驗出異常
(8)改善服務
(9)預測路況
(10)預測電力需求
(11)預測感冒流行
(12)預測股市行情
(13)油資成本的最佳化
巨量資料的運用模式分類
(1)個別優化×批次處理型
(2)個別優化×即時資訊型
(3)全體優化×批次處理型
(4)全體優化×即時資訊型
巨量資料的運用深度
(1)掌握過去與現狀
(2)發現行為模式
(3)預測
(4)優化
【專欄】動態定價
巨量資料運用的真正價值
本章重點整理
★第六章巨量資料時代的隱私權問題★
隱私權與創新的兩難
美國國會也表示關注
製作網路個資檔案的是與非
請勿追蹤(Do Not Track)
消費者隱私權保護法案
採用選擇性參與方式的歐盟
資料保護綱領也進行修正
(1)引進「抹掉過去」的權利
(2)使用者尚未明確表示同意前,不得使用其個人資料
(3)制定資料可攜(Data Portability)的權利
(4)擴大說明責任
日本的法令架構是《個人資訊保護法》加上分別針對各領域訂定的指導原則
部分指導原則在提供資訊予第三人上採用選擇性參與方式
日本政府的評估狀況
以「資訊大航海計畫」為契機開始評估的經濟產業省
由生活紀錄的角度進行議論的總務省
線索就在與使用者的「對話」
實體世界裡的行為追蹤
本章重點整理
★第七章開放資料時代的到來與資料市場的興盛★
「活用外部公開資料」的選項
風起雲湧的連結開放資料(LOD,Link Open Data)運動
影響擴及開放式政府
如雨後春筍般不斷出現的新創企業
透過比賽促進資料運用
落後一步的日本
日本國內因三一一大地震而略有進展的開放資料使用
資料市場的興盛
(1)Factual
(2)Windows Azure Marketplace
(3)Infochimps
(4)Public Data Sets on AWS
商業模式各有不同
熱絡的資料市場存在著不容忽視的課題
本章重點整理
★第八章面對巨量資料時代該有的準備★
巨量資料時代的企業IT策略
開始邁向資料分享的日本企業
(1)LAWSON×Yahoo
( 2)KDDI×樂天
(3)COOKPAD×ID’s
擁有原創資料的好處
供應商的新商機在提供「資料整合服務」
誰能成為資料整合公司
美國的支付服務業者明顯朝「資料整合公司」發展
(1)VISA
(2)PayPal
(3)美國運通
讓原創資料搖身一變成為「貴重資料」的絕妙資料組合
全世界對資料科學家的需求愈來愈高
資料科學家需具備的技能
資料科學家需具備的資質
(1)溝通能力
(2)創業家精神
(3)好奇心
相關人才嚴重不足
相關研究所開始設立
鉅額資金流向巨量資料分析企業
日本也開始對資料科學家展開搶人大戰
最後的一道關卡--組織體制與企業文化
朝向資料驅動型企業邁進
本章重點整理
謝詞
參考文獻
圖表索引
Big Data大數據的獲利模式:圖解-案例-策略-實戰在這買最好康
商品網址:
好書推薦
48C053ED08C4E1BB